
•

•

•

•

logos,

this

1

1 Exploration

The name Logo comes from the Greek word which means “word.” In contrast to
earlier programming languages, which emphasized arithmetic computation, Logo was
designed to manipulate language—words and sentences.

Like any programming language, Logo is a general-purpose tool that can be
approached in many ways. Logo programming can be understood at different levels of
sophistication. It has been taught to four-year-olds and to college students. Most of the
books about Logo so far have been introductory books for young beginners, but
book is different. It’s for somewhat older learners, probably with some prior computer
experience, although not necessarily Logo experience.

This book was written using the Berkeley Logo dialect, a version of Logo that’s
available at no cost for PCs, Macintoshes, and Unix systems. Recent commercial Logo
dialects have emphasized the control of real-time animation, robotics, and other such
application areas, somewhat at the expense of more traditional Logo features designed
to be useful in the development of larger and more complex programs. Berkeley Logo
follows the traditional design, so you may miss some “bells and whistles” that you associate
with Logo from elementary school. In fact, we’ll hardly do any graphics in this book!

Some of the details you’ll have to know in order to work with Logo depend on the
particular kind of computer you’re using. This book assumes you already know some
things about your computer:

How to turn on your computer and start Logo

How to type a command, ending with the RETURN key

How to use control keys to correct typing mistakes

How to use a text editing program

Getting Acquainted with Logo...

[] ()

UPPER CASE lower case

Hi

cleartext ct

language
environment.

programs
vocabulary

prompt.
instruction

2 Chapter 1 Exploration

Welcome to Berkeley Logo version 3.3
?

repeat 50 [setcursor list random 75 random 20 type "Hi]

These points I’ve listed aren’t actually part of the Logo itself, but they’re part
of the Logo programming Appendix A has a brief guide to some of these
machine-specific aspects, but if you’ve never used a computer before at all, start by
working with some application programs to get the feel of the machine.

On the other hand, I’d like to pretend that you know nothing about the Logo
language—the primitive procedures, the process of procedure definition, and so on—
even if you’ve really used Logo in elementary school. The reason for this pretense is that
I want you to think about programming in what will probably be a new way. The
may not be new to you, but the with which you think about them will be. I’m
warning you about this ahead of time because I don’t want you to skip over the early
chapters, thinking that you already know what’s in them.

Okay, it’s time to start Logo running on your computer. You should then see a
screen that says something like

The question mark is Logo’s When you see the question mark, it means that the
computer is prepared for you to type in a Logo and that Logo will carry out
the instruction as soon as you finish it.

Right now, type this instruction:

Remember that square brackets are different from parentheses . Also remember
that it’s important to put spaces between words. However, it doesn’t matter whether you
use or letters in the words that Logo understands.

If all goes well, Logo will cheerfully greet you by scattering s all over the screen.
If all doesn’t go well, you probably misspelled something. Take a look at what you typed,
and try again.

Afterward, you can clear the screen by typing or its abbreviation .

why

Another Greeting 3

repeat random setcursor

... in Two Senses

Another Greeting

repeat 20 [repeat random 30 [type "Hi] print []]

I thought it would be appropriate to start exploring Logo by having it say hello. You and
Logo can get acquainted as you would with another person.

But, of course, the point of the exercise is to get acquainted with Logo in a more
serious sense too. You’re seeing what a Logo instruction looks like and a little bit about
what kinds of things Logo can do. In this first chapter the kind of acquaintance I have
in mind is relatively superficial. I’m trying to get across a broad sense of Logo’s flavor
rather than a lot of details. So I’m not explaining completely what we’re doing here.
For that reason, the second chapter will repeat some of the same activities, but I’ll give a
more detailed discussion there.

Perhaps you’ve made Logo’s acquaintance before, probably through the medium
of turtle graphics. In that first introduction you may have explored Logo’s ability to
manipulate text as well as graphics. But maybe not. Writing a book like this, it’s not easy
for me to carry on a conversation with someone I haven’t met, so in this introduction
I may be saying too much or too little for your individual situation. I hope that by the
second chapter you and the other readers will all be ready for the same discussion.

If you haven’t used Logo before, or if you’ve used only the part of Logo that has to do
with turtles, look at the instruction I asked you to type earlier. Think about the different
parts of that instruction, the words like and and . Try to
figure out what each one means. Then see if you can figure out an experiment to decide
if you’ve understood each word correctly! Later, we’ll go over all these details and you’ll
learn the “official” explanations. But the kind of experimenting I’m suggesting isn’t
pointless. This kind of exploration may raise questions in your mind, not just about the
meanings of the Logo words but about how they’re connected together in an instruction,
or about a word means just what it does rather than something a little different.

Here is a somewhat less “scatterbrained” greeting instruction:

Try that one. Compare it to the one we started with. Which do you like better? Do
you prefer random scattering, or orderly rows? Perhaps this question will teach you
something about your own personality!

print random

hi

usermanual userman.ual

style

procedures,

4 Chapter 1 Exploration

Fooling Around

A Slightly Longer Conversation

* If you’re using Berkeley Logo, it’s in a file named (or if you’re
using a DOS machine) that should be installed along with the Logo program. The Berkeley Logo
reference manual is also an appendix to Volume 2 of this series.

Then again, maybe you think this is all silly. If so, I’d like to try to convince you that there
are some good, serious reasons for you to take a lighthearted approach to computer
programming, no matter how serious your ultimate goals may be.

There are two aspects to learning how to program in a language like Logo. One
aspect is memorizing the vocabulary, just as in learning to speak French. If you flip
through the reference manual that came with your Logo,* you’ll find that it’s a sort of
dictionary, translating each Logo word into a bunch of English words that explain it.
But the second aspect is to learn the “feel” of Logo. What kinds of problems does Logo
handle particularly well? What are the examples of programming that correspond
to the idioms of a human language? What do you do when something doesn’t work?

It is by fooling around with Logo that you learn this second aspect of the language.
Starting with the second chapter of this book, we’ll be going through plenty of dry,
carefully analyzed fine points of Logo usage. But as we progress, you should still be
fooling around, on the computer, with the ideas in the chapters.

In fact, I think that that kind of intellectual play is the best reason for learning
about computer programming in the first place. This is true whether you are a kid
programming for the fun of it or an adult looking for a career change. The most
successful computer programmers aren’t the ones who approach programming as a task
they have to carry out in order to get their paychecks. They’re the ones for whom
programming is a joyful game. Just as a baseball diamond is a good medium in which
you can exercise your body, the computer is a good medium in which you can exercise
your mind. That’s the real virtue of the computer in education, not anything about job
training or about arithmetic drill.

The Logo words such as and are the names of little pieces of
computer program that are “specialists” in some particular task. We are now going to
add to Logo’s repertoire by inventing a new procedure named . At the question mark
prompt, start by typing this:

boldface

to

>

lightface

hi

end

to hi

hi

Brian Harvey

I’m fine.

metaphor teach

A Slightly Longer Conversation 5

to hi

?
>

print [Hi. What’s your name?]
print sentence [How are you,] word first readlist "?
ignore readlist
print [That’s nice.]
end

hi

?
Hi. What’s your name?

How are you, Brian?

That’s nice.

The word here is short for “here’s how to.” The name is intended to suggest
the that what you’re doing when you write computer programs is to the
computer a new skill. Metaphors like this can be very helpful to you in understanding a
new idea. (Just ask any English teacher.) I’ll point out other metaphors from time to
time.

Logo should have responded to this instruction by printing a different prompt
character. Instead of the question mark, you should now see a greater-than sign () at
the beginning of the line:

(Whenever I show an interaction with the computer in this book, I’ll show the part
that you’re supposed to type in ; what the computer prints in response is in

. But I won’t use boldface when I’m only showing what you type and not a
complete interaction.) This new prompt means that Logo will not immediately carry out
whatever instructions you type; instead Logo will remember these instructions as part of
the new procedure . Continue typing these lines:

Again, be careful about the spaces and punctuation. After the last line, the one that just
says , Logo should go back to the question mark prompt. Now just type

on a line by itself. You can carry on a short conversation with this program. Here’s what
happened when I tried it.

☞

☞

hi

A Sneaky Greeting

6 Chapter 1 Exploration

to hi2

to start
cleartext
print [Welcome to Berkeley Logo version 3.3]
type "|? |
process readlist
type "|? |
wait 100
print [Ha, ha, fooled you!!]
end

to process :instruction
test emptyp :instruction
iftrue [type "|? | process readlist stop]
iffalse [print sentence [|I don’t know how to|] first :instruction]
end

If something unexpected happens when you try it, perhaps you made a typing mistake.
If you know how, you can fix such mistakes using the Logo editor. If not, you’ll have
a chance to review that process later, but for now, just start over again but give the
procedure a different name. For example, you can say

for the second version of .

This program pretends to be pretty smart. It carries on a conversation with you in
English. But of course it isn’t really smart. If you say “I feel terrible” instead of “I’m fine,”
the procedure cheerfully replies “That’s nice” anyway. How else can you mess up the
program? What programming tools would you need to be able to overcome the “bugs”
in this program?

(When a paragraph starts with this symbol it means that the paragraph asks you
to invent something. Often it will be a Logo program, but sometimes, as in this case, just
answers to questions. This is a good opportunity to take a break from reading, and check
on your understanding of what you’ve read.)

This chapter started as a sort of pun in my mind—the one about getting acquainted.
How should I have Logo introduce itself? I’m still playing with that idea. Here’s another
version.

☞

Saving Your Work 7

sports.quiz
history.quiz

A Quiz Program

Saving Your Work

to music.quiz
print [Who is the greatest musician of all time?]
if equalp readlist [John Lennon] [print [That’s right!] stop]
print [No, silly, it’s John Lennon.]
end

to total.quiz
music.quiz
sports.quiz
history.quiz
end

* It has been suggested by some reviewers of the manuscript that there may be younger readers
who don’t know who John Lennon is. Well, he’s the father of Julian Lennon, an obscure rock star
of the ’80s, and he used to be in a rock group called the Quarrymen. If you have trouble with some
of the cultural references later in the book you’ll have to research them yourself.

The vertical bars are used to tell Logo that you want to include space characters within
a word. (Ordinarily Logo pays no attention to extra spaces between words.) This is the
sort of grubby detail you may not want to bother with right now, but if you are a practical
joker you may find it worth the effort.

Before we get on to the next chapter, I’ll just show you one more little program. Try
typing this in. As before, you’ll see greater-than prompts instead of question marks while
you’re doing it.

You can try out this procedure by typing its name as an instruction.*

If you don’t like my question, you could make up your own procedures that ask
different questions. Let’s say you make up one called and another called

, each asking and answering one question. You could then put them all
together into one big quiz like this:

If you do write a collection of quiz procedures, you’ll want to save them so that they’ll
still be available the next time you use Logo. Certainly you’ll want to save the work you

save "mystuff

About Chapter 2

save

mystuff
load

save
mystuff

mystuff
mystuff

save

print
print

workspace

procedure workspace

all

doing

understanding

below
inside

8 Chapter 1 Exploration

do in later chapters. You can ask Logo to record all of the definitions you’ve made as a
file using the command. For example, if you enter the instruction

you are asking Logo to write a disk file called containing everything you’ve
defined. (The next time you use Logo, you can get back your definitions with the
command.)

Don’t get confused about the difference between a name and a
name. Logo beginners sometimes think that saves only a single procedure, the
one whose name you tell it (in this example, a procedure named). But the
workspace file named will actually contain the procedures you’ve defined.
In fact, you probably don’t have a procedure named .

The format for the name of a disk file will depend on the kind of computer you’re
using, whether you’re writing to a hard disk or a floppy disk, and so on. Just use whatever
file name format your system requires in other programs, preceded by the quotation
mark that tells Logo you’re providing a word as the input to the command.

In this chapter the emphasis has been on things. You’ve been playing around with
some fairly intricate Logo instructions, and if you don’t understand everything about the
examples, don’t let that worry you.

Chapter 2 has the opposite emphasis. There is very little to do, and the examples
will seem quite simple, perhaps even insultingly simple! But the focus of the chapter is
on those simple examples in great detail.

Logo deserves its reputation as an easy-to-learn language, but it is also a very
sophisticated one. The ease with which Logo can be learned has lured many people
into sloppy thinking habits that make it hard for them to grow beyond the most trivial
programming. By studying examples that seem easy on the surface, we can start exploring

the surface. The important questions will not be ones like “what does do,”
but instead ones like “what is going on the Logo interpreter when I type ?”

Later chapters will strike more of a balance between things to do and things to think
about. If the pace seems slow in chapter 2, glance back at the table of contents to reassure
yourself about how much territory we’ll cover before the end of the book. Then keep in
mind that you’ll need the ideas from chapter 2 in order to understand what comes later.

No Exercises

you

confident

No Exercises 9

This is the point in the chapter where you might be expecting a set of exercises: Problem
1.1, get the computer to print your name.

There aren’t any exercises—but not because you shouldn’t try using Logo at this
point. The reason is that part of the challenge is for to invent things to try, not just
rely on me for your ideas. In each chapter there will be some sample procedures to
illustrate the new information in the chapter. You should try to invent programs that use
those ideas.

But I hope it’s clear by now that I don’t want you to do this with a sense of duty.
You should play with the ideas in each chapter only to the extent that it’s interesting and
mind-stretching for you to do so.

In this chapter I really haven’t yet told you any of the rules for putting together Logo
instructions. (I’ll do that in Chapter 2.) So you shouldn’t get discouraged or feel stupid
if you don’t get very far, right now, in playing with Logo. It will be a few more chapters
before you should expect to feel really about undertaking new projects of your
own. But you won’t break anything by trying now. Go ahead, fool around!

